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Who Am I ? 
•  I’m a staff member at Sandia, and I’ve 

been at SNL for 3 1/2 years.  Prior to that I 
was at LANL for 18 years.  I’ve worked in 
ASC since its beginning and in the ASC 
V&V program since it began. 

•  In addition, I have expertise in 
hydrodynamics (incompressible to shock), 
numerical analysis, interface tracking, 
turbulence modeling, nonlinear coupled 
physics modeling, nuclear engineering… 

•  I’ve written two books and lots of papers on 
these, and other topics. 
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References for these Lectures 
•  Richtmyer & Morton, “Difference Methods for Initial Value 

Problems,” Wiley Interscience, 1967. 
•  R. J. Leveque, “Nonlinear Conservation Laws,” Birkauser, or his 

more recent Cambridge Book. 1990. 
•  Stephen Pope’s Book, Turbulent Flow, Cambridge University 

Press, 2000. 
•  Uriel Frisch’s, “Turbulence,” Cambridge University Press, 1995. 
•  Oberkampf & Trucano, “Verification and Validation in 

Computational Fluid Dynamics,” Progress in Aerospace Sciences, 
2002.  

•  Pat Roache’s paper in Annual Reviews in Fluid Mechanics, 1998. 
•  Pat Roache’s book, “Verification and Validation in Computational 

Science and Engineering” – new edition available 
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PART 1. BASICS OF CFD 

6 Introduction to CFD 
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A thought to start us off. 

“An expert is someone who knows some of the worst mistakes 
that can be made in his (her) subject, and how to avoid them.”  

- Werner Heisenberg 

Introduction to CFD 7 
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The origin of CFD calculations 

•  The first CFD calculation was reported in a Los 
Alamos report on June 20, 1944 – lead author 
Hans Bethe  
–  Feynmann was the computational lead 
–  Still classified! 

•  The first codes were 1-D and Lagrangian, shocks 
were tracked (no viscosity & finite differences failed 
completely as of 1945 w/o artificial viscosity). 

•  Artificial viscosity was developed by Von Neumann 
and Richtmyer (Richtmyer published a report in 
1948 and is the likely inventor of the concept). 

Ulam 

Introduction to CFD 8 
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CFD codes were natural for some problems. 

•  Outside the weapons’ labs codes (probably) got 
their start in numerical weather prediction (via John 
Von Neumann at IAS) 

•  At the Weapons Labs – particle-in-cell codes 
appeared in the mid-1950’s at LASL 

•  Grid based Fluid codes – Noh’s CEL code in 
Methods in Computational Physics, Volume 3 1964 

•  In the mid-1960’s codes began to extend to a wider 
set of communities such as aerospace, mechanical/
nuclear engineering and astrophysics. 
–  Popularized by Harlow (LASL) & Spalding (Imper. College) 

•  Maturity* in the codes started to be seen by the 
mid-1970’s. 

* Maturity is use beyond “research” codes (i.e. programmatic 
work), and also depends upon widespread availability of 
capable computing. 

Introduction to CFD 9 
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Reading material: Harlow on the history 
of fluid dynamics in T-3 

Introduction to CFD 10 
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The first “real” CFD calculation was for 
weather forecasting. 

Introduction to CFD 11 
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It took place at IAS (Princeton) in 1950 
involving, among others, John Von Neumann. 

Jules Charney 

Staggered Grid 

ENIAC 

Norm Phillips 
Joe Smagorinsky 

First calculation 
16x16x(3) mesh 
∆x=300 km 

48 time steps 
∆t=30minutes 

Introduction to CFD 12 
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A connection between weather modeling, 
Von Neumann and Large Eddy Simulation 

•  In 1956 a simulation by Norm Phillips of weather over the 
eastern half of the US for a month was completed and the 
subject of a meeting at IAS. 

•  Late in the simulation the solution began to experience and 
instability (ringing) 

•  It was suggested by Charney that “Von Neumann’s viscosity” 
might control this ringing. 

•  Smagorinsky completed the follow on simulation including this 
technique, which was 3-D instead of 2-D. 
–  This technique became the first Large Eddy Simulation 

(LES) subgrid turbulence model 
–  One should note with some significance that the first shock 

capturing method gave birth to a turbulence model! 

Introduction to CFD 13 
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Types of CFD solver: hyperbolic, elliptic 
and parabolic PDEs 
•  The starting point for methods is usually a 

hyperbolic system of PDEs. 
–  Methods are often explicit and have a severe time 

step constraint. 
–  Viscous terms are parabolic. 

•  Incompressible flow involves an elliptic PDE along 
with both hyperbolic terms, and parabolic viscous 
terms. 
–  The (stability-based) time step is determined by 

explicit terms (accuracy is a more subtle issue!). 
•  Many methods utilize (semi-)implicit methods to 

remove time step restrictions. 

14 Introduction to CFD 
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Each type of PDE brings substantial, but 
different numerical challenges. 

•  Hyperbolic PDEs can  support spontaneously developing 
discontinuous solutions. 

•  Explicit methods for hyperbolic or parabolic PDEs can 
carry restrictive stability conditions. 

•  Implicit methods for hyperbolic PDEs are expensive and 
often lack robustness. 

•  Elliptic PDEs are expensive to solve, but generally 
robust. 

•  Parabolic PDEs are generally easier to solve. 

15 Introduction to CFD 

∇⋅u = 0 →∇2 p = −∇ ⋅ u ⋅ ∇u −ν∇2u( )
∂u
∂t +u ⋅ ∇u +∇p = ν∇

2u
elliptic 

hyperbolic parabolic 
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There are a lot of different numerical methods, 
but they all depend on the same fundamentals. 

•  Methods fall into a variety of categories: finite difference, finite 
volume, finite element, discontinuous Galerkin, spectral, 
spectral element, spectral volume, semi-Lagrangian, balance 
etc,… 

•  For time dependent methods there are explicit, semi-implicit, 
implicit, linearized, nonlinearly consistent,… 

•  Different methods are advantageous for different 
circumstances, applications and other considerations. 

•  All methods have the same objective solve the governing 
equations in an accurate, stable and efficient manner, 

•  They ultimately have to abide by the same fundamental 
requirements. 

•  I will mostly focus on finite difference/volume methods for 
hyperbolic PDEs because it is what I know the most about! 

Add course title to footer 16 
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Godunov’s Theorem relating 
high-order and montonicity 
•  Godunov’s theorem says that a high-order linear 

methods (2nd or higher) cannot be monotone for 
advection. 

•  Restated: only 1st order linear methods are 
monotone 

•  A linear method uses the same differencing stencil 
for all zones. 

•  Godunov also developed a method that has been 
used extensively in aerospace and astrophysics.   

Introduction to CFD 17 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

Godunov’s account of the creation of his 
method and theorem. 

Introduction to CFD 18 
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Robust methods for hyperbolic PDEs were 
too dissipative until the early 1970’s when… 

•  … a revolution began in computational physics. 
•  Within the span of one or two years four researchers 

independently developed a key idea that made Eulerian codes 
viable. 

•  It revolved around solving 

•  All four developed “high-resolution” methods: 
–  Boris (NRL) Flux Corrected Transport 
–  Van Leer (Leiden, Netherlands) limiters 
–  Kolgan (USSR, Taiga) high-order Godunov 
–  Harten (NYU/Israel) self-adjusting hybrid 

 

∂ϕ
∂t

+∇⋅ u − ugrid( )ϕ = 0

Introduction to CFD 19 
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What the heck was going on in 1971 and 
1972? Was something in the water? 
•  Eulerian hydrocodes became mainstream with the publication 

of the Journal of Computational Physics, … 
•  … and the availability of large scale computing like the CDC 

machines. 
•  The Lax-Wendroff method was the mainstay of computations 

outside the Lab and provided the basis to work from. 
•  Aerodynamics, combustion and astrophysics communities all 

started computing (more naturally Eulerian in how the 
problems were cast). 

Introduction to CFD 20 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

Overcoming Godunov’s Theorem with 
nonlinear methods for advection 
•  The key to overcoming Godunov’s theorem is using nonlinear 

methods – using different stencils dependent on the local 
solution. 

•  Developed independently by four men in 1971-1972 
–  Jay Boris (NRL) 
–  Bram Van Leer (U. Leiden) 
–  Kolgan (USSR) 
–  Harten (Israel) 

Bram van Leer 

Jay Boris 

Introduction to CFD 21 
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Monotonicity is a desirable property to maintain numerically 
leading to the suppression of oscillations without too much 
dissipation for advection. 

Some of the first high-
resolution 
methods invoked a 
geometric definition of 
monotonicity. 

For an interpolation the 
reconstruction of a  
function in a cell should 
not exceed the values 
of its neighboring cells. 

Introduction to CFD 22 
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Development of implicit methods 
•  Had the twin genesis of the MAC method (1st) and Chorin’s 

projection (2nd) for incompressible flows. 
•  The MAC method formed the basis of most developments for 

incompressible flow solvers used by the engineering 
community. 

•  At LASL Harlow and Company started to develop the ICE 
methods (semi-implicit) which formed the basis of reactive 
flow and multimaterial codes.  These codes used the 
experience of the MAC method. 

•  These codes became the basis of early reactor safety codes 
(TRAC, RELAP, TRACE) 
–  Harlow ended research in CFD by ~1975 and began 

working on turbulence modeling. 

Introduction to CFD 23 
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High-Order (Projection-like) Methods for 
Incompressible Flows 
•  Hyperbolic terms differenced using a variety of high resolution 

methods (finite volume, Godunov, ENO, FCT, SMART, 
QUICK-type, etc…) 

•  Time integration should be  done without spatial splitting 
•  Exact and approximate versions of Chorin’s projection method 

•  Other similar methods are SIMPLE, SIMPLER,… sequential 
methods with “fixed point” correction. 

•  More recently methods have become implicit and more fully 
coupled (like Newton-Krylov). 

•  Finite element method have under-gone similar developments 
(see Gresho among others). 

Introduction to CFD 24 

  
∇⋅ 1ρ∇p =∇⋅  u ∗

 

un+1 = u∗ − 1
ρ
∇p
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Two Step Solution 
•  1st solve a convection-diffusion equation    

        
•  Plus other equations (density) without being constrained to be 

divergence free 

•  The apply the projection of the velocities to a (approximately) 
divergence-free subspace 

  
 u ∗ =  u n − Δt  u ⋅∇ u +ν∇2  u +

 
F [ ]n+1/2

  ρ
n+1 = ρn −Δt∇⋅ ρ u ( )n+1/2

Introduction to CFD 25 
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•  The pressure Poisson equation 
•  Solved twice a time step 
•  Solved using a multigrid preconditioned conjugate gradient 

method 
•  The end of time step divergence is only approximately zero 

•  Semi-implicit (ICE) methods work similarly, except there is no 
divergence constraint although the elliptic equation is formed 
in the same way.   
–  The implicit step removes the stability restriction 

associated with sound waves.  

The (approximate) projection & semi-
implicit methods are closely related. 

  
∇⋅ 1ρ∇p =∇⋅  u ∗

 

un+1 = u∗ − 1
ρ
∇p

Introduction to CFD 26 
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The evolution of computers is hard to 
separate from the history of codes 

ENIAC I, 1950 

ENIAC V, 1960 

Introduction to CFD 27 
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The appearance of the CDC 6600 is an 
important watershed (mid 60’s). 
•  The combination of new machines and new methods make 

useful engineering codes possible. 

CDC6600 

CDC7600 

Introduction to CFD 28 
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Of course there are Crays from the 
70’s-90’s 

Introduction to CFD 29 
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…and the modern ASCI era with room 
filling machines again! 

Introduction to CFD 30 
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We’ve been gliding along with Moore’s 
law for 40+ years, will it continue? 

•  Recently, IBM, Sony & Toshiba has started putting parallel 
processors on a chip. Its called Cell (9 proc.) 

Then Now 

Introduction to CFD 31 
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The next generation of computing will be 
disruptive! 
•  The programming model developed over the last 15 years will 

probably be overthrown. 
•  The consequences for methods is not known! 

Exascale Computing 32 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

One important aspect is the development 
of operating systems and languages 

•  In the early days of computers 
programming was much more challenging, 
even involving the physical modification of 
the computer in order to implement 
programs. 

•  This difficulty limited the complexity of 
algorithms that one would place on a 
machine. 

Introduction to CFD 33 
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One important aspect is the development 
of operating systems and languages 

•  The arrival of Fortran was a big 
advance. 

•  The next big event was the placement 
of programs in memory. 

•  The operating systems were 
constantly changing, and still do to 
some extent. 

•  How did you begin programming? 
•  The first programming methods are 

terrifying to behold! 

Introduction to CFD 34 
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The most obvious aspect is the raw 
performance of the machines. 

The LLNL Plot 

Follows Moore’s  
Law (approx.) 

The advent 
of Eulerian 
hydrocodes 

Introduction to CFD 35 
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More recently the whole World has 
played in this field 

Introduction to CFD 36 
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What about the future? 
“But the only way of discovering the  
limits of the possible is to venture a  

little way past them into the impossible.”  
Arthur C. Clarke [Clarke's Second Law] 

“Nothing is destroyed  
until it is replaced.”  
–Auguste Compte 

AW Cook LLNL 
Density with 1.7% Correlation in θ 

axial gap 

Introduction to CFD 37 
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NUMERICAL METHODS AND 
ANALYSIS FOR CFD 

1 Numerical Methods and Analysis 1 
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Quote by Peter Lax: The American Mathematical Monthly, 
February 1965: 

“…who may regard using finite differences as the last resort 
of a scoundrel that the theory of difference equations is a 
rather sophisticated affair, more sophisticated than the 
corresponding theory of partial differential equations.” 

He goes on to make two points: 
1. The proofs that an approximation converges is analogous 

to the estimates of the soln’s to the PDEs (points to the 
CFL paper in 1928)* 

2. These proofs are harder to construct than for the PDEs 

*CFL=Courant, Friedrichs, Lewy which used numerics to prove 
the existence of soln’s to PDE and gives us the term CFL condition. 

Numerical Methods and Analysis 2 
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The scalar wave equation is both simple, 
but challenging to numerical schemes. 
•  Its as simple as a PDE can get 

•  Its solution is simple too 

•  It introduces a number of important concepts and makes a 
great test for codes and methods. 

•  Its a lot harder to solve numerically than one might think. 
•  Jay Boris describes this equation as an “embarrassment to 

computational physics” 
–  This does not apply to special methods. 
–  This is because despite its complexity, methods that are 

general (apply to more complex equations and systems) 
have trouble solving the linear advection equation well. 

∂ρ
∂t

+a∂ρ
∂x

=0, usually a=1

ρ x,t⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=ρ x−at,0⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Numerical Methods and Analysis 3 

hyperbolic 
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Characteristics are an incredibly useful 
concept. 
•  This equation provides a painless introduction to 

characteristics, the rays in space-time that solutions follow. 
•  With the linear wave equation the characteristics are straight. 

time 

space 

Numerical Methods and Analysis 4 
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Domain of dependence of a solution leads 
directly to the Courant or CFL number. 

•  This is the region of space that can be physically effected by 
another space due to the finite speed of propogation. 

•  The idea originated with Courant, Friedrichs and Lewy in 1928 
related to the analytic existence of solutions to PDEs 
(discretization was used as a device in the proofs). 

∆tCFL

Numerical Methods and Analysis 5 
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Smoothness is an important aspect of 
the profiles advected with this equation. 
•  Even though the profile is not modified by the exact differential 

equation, the numerical solution will disturb the profile 
according to two conditions, 
–  The nature of the numerical method itself, 
–  And the nature of the profile.   

•  Numerical methods have much more pathological behavior 
near discontinuous solutions 

•  Conversely, one can only expect ideal behavior for smooth 
solutions. 

•  The nature of the scalar advection equation means that once 
an error is made, its kept in the numerical solution forever. 
–  This is at the heart of the difficulty of solving this equation 

numerically. 

Numerical Methods and Analysis 6 
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An example of the scalar wave equation in 
action: Rider, Greenough & Kamm 2005. 

Numerical Methods and Analysis 7 
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The basic theoretical expectations are 
essential to understand... 

•  Truncation or approximation error 
•  Stability 
•  Lax (Richtmyer) Equivalence Theorem 
•  FEM: Strang&Fix, Ciarlet, Brezzi, Babuska 
In hyperbolic PDEs 
•  The Lax-Wendroff theorem 
•  Godunov’s theorem 
•  Entropy conditions 

•  The LeFloch-Hou theorem 
Courant Von Neumann 

Peter Lax 

Godunov 

Strang 

Ciarlet 

Brezzi 

Babuska 

Richtmyer 

Numerical Methods and Analysis 8 
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Local truncation error is the most basic 
concept in numerical approximation 
•  This can be estimated with the aid of a Taylor series 

expansion. 

•  This measures the difference between the discrete and 
continuous versions of the equations. 

•  When combined with stability it forms the foundation of 
numerical analysis. 

 
exp at( ) ≈

t→0
1+ at + a

2t 2

2
+ a

3t 3

6
+ a

4t 4

24
+ant n

n!

truncation error =
h→0

exact - numerical

Numerical Methods and Analysis 9 
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Numerical stability is central to 
successful methods. 

•  A stable approximation is a pre-requisite for the use of 
that approximation. 

•  We introduce the basic concept with the analysis of a 
simple ODE integrator. 

•  An amplification factor is used to describe the stability 
of a method (greater than one is bad! Although less 
than one implies damping.) 

•  Basically, one desires that the amplification of errors 
will be bounded, which usually means they will be 
damped! 

Von Neumann 

Numerical Methods and Analysis 10 
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We can examine the basic stability 
concepts with ODEs. 
•  The forward Euler example. 

•  Truncation error 

Un+1 −Un

∆ t
= L Un( )→Un+1 =Un + ∆ tL Un( )

∆ t 2

2
∂2L U( )
∂t 2

+
∆ t 3

6
∂3L U( )
∂t 3

+ H.O.T.

Numerical Methods and Analysis 11 

Stability Plot 

a∆t 

b∆t 

L = a + bi
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The Lax-Richtmyer equivalence theorem 
provides the barest requirements on methods. 

•  Putting numerical stability and truncation error together gets 
us to the basic requirement for linear methods for differential 
equations. 

Theorem (Lax Equivalence): A numerical method for a linear 
differential equation will converge if that method is 
consistent and stable. Comm. Pure. Appl. Math. 1954 

Consistency - means that the method is at least 1st order 
accurate – means it approximates the correct PDE. 

Stable - the method produces bounded approximations 

Important to recognize for its relation to verification. 

Numerical Methods and Analysis 12 
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Let’s state this differently (Gil Strang, 
Introduction to Applied Mathematics) 

•  The fundamental theorem of numerical analysis, The 
combination of consistency and stability is equivalent to 
convergence. 

•  There is a similar theorem for ODEs courtesy of Dahlquist, 
which applies to nonlinear functions! 

Numerical Methods and Analysis 13 
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Mathematical expectations for the numerical 
solution of elliptic and parabolic PDEs 

•  It is generally possible to get the design order of 
accuracy intended for these classes of PDEs due 
to smoothness. 

•  For general cases with discontinuities and 
singularities, it is still possible to get the full order 
accuracy, but… 
– The ability of a method to achieve this is 

dependent on the method’s utilization of 
special features to deal with the difficulties. 

– Does the testing of the method provide 
confidence that the special features indeed 
provide this? 

Numerical Methods and Analysis 14 
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Lax-Wendroff Theorem is an essential 
motivator for many numerical methods. 
•  Most methods for hyperbolic PDEs are based on the discrete 

conservation form following the continuous conservation form 
because of this theorem. 

Theorem (Lax and Wendroff): If a numerical method is in 
discrete conservation form, if a solution converges, it will 
converge to a weak solution of the PDE. A weak solution 
is not the weak solution.  There are infinitely many weak 
solutions. 

Conservation form: the flux out of one cell is into another 

∂u
∂t

+
∂f u⎛

⎝⎜
⎞
⎠⎟

∂x
=0⇒ujn+1=ujn− ∆t∆x f j+1/2− f j−1/2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Numerical Methods and Analysis 15 
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The key to the Lax-Wendroff theorem is 
using conservative fluxes. 
•  This means putting the equations being solved in flux form, 

•  In this form all the flux contributions will telescope or collapse 
into boundary terms. 

•  This mimics the behavior of physically conserved fluxes. 

ujn+1=ujn− ∆t∆x f j+1/2− f j−1/2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

uk
n+1

k=k0,kN
∑ = uk

n− ∆t∆x fk+1/2− fk−1/2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟k=k0,kN

∑

⇒ uk
n⎛

⎝⎜
⎞
⎠⎟
− ∆t∆x fN − f0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟k=k0,kN

∑

Numerical Methods and Analysis 16 
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Here is an example of what happens without 
conservation form. Burgers’ equation. 

Nonconservation form Conservation form 

u j
n+1 = u j

n − ∆ t
∆ x

u j
n u j

n − u j−1
n( ) u j

n+1 = u j
n − ∆ t
∆ x

1
2 u j

n( )2 − 1
2 u j−1

n( )2( )
∂u
∂t

+ u ∂u
∂x

= 0 ∂u
∂t

+
∂ 1

2u2( )
∂x

= 0

Numerical Methods and Analysis 17 
Example from Randy Leveque 
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Entropy conditions are critical in 
determining physically meaningful results. 
•  The problem with L-W is that there are an infinity of weak 

solutions, we need a mechanism to pick out the correct 
physical one. 

•  The mechanism to do this entropy.  The entropy created 
through dissipation, numerical viscosity. 

•  This is the connection to vanishing viscosity, more generally, 

∂u
∂t

+
∂f u⎛

⎝⎜
⎞
⎠⎟

∂x
=λ

∂2u
∂x2

λ→0+

Numerical Methods and Analysis 18 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

Godunov’s theorem is critical to the 
development of modern methods. 
•  As mentioned earlier, it is a “barrier theorem” stating 

what cannot be done. 
•  It states that a linear second-order method cannot be 

monotone (i.e. non-oscillatory). 
•  The key word is “linear”. 
•  Modern methods are nonlinear and monotonicity-

preserving.  The nonlinearity makes the difference 
stencil dependent on the solution. 
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The Hou-LeFloch theorem has potentially 
profound consequences . 
•  What happens when the method is not in conservation form? 
•  The solution does not converge to a weak solution much less 

a correct one regardless of the dissipation. 

Theorem (Hou-LeFloch): For a non-conservative method the 
solution differs from a weak solution by an amount 
proportional to the entropy produced in the solution. 
Math. Comp. 62, 1994 
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The Majda-Osher theorem establishes accuracy 
expectations for discontinuous flows. 
•  Majda and Osher establish that the approximation of shocked 

or discontinuous flows will converge at be 1st order at best. 

Theorem (Majda and Osher): A numerical solution will 
converge at 1st order at best for the region between any 
characteristics emanating from a discontinuity. Comm. 
Pure Appl. Math. 1977 

•  Nonlinear discontinuties (self-steepening like shocks) 
converge at 1st order. 

•  Linear discontinuties converge at less than 1st order (order  
 m/(m+1) where m is the order of the method, Banks, Aslam, 
Rider (2009)) 
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Simple (linear) numerical methods 
•  Simple second-order differencing  
•  Artifical viscosity  
•  Upwind differencing 
•  Lax-Friedrichs 
•  Lax-Wendroff 
•  2nd order upwinding 
•  Fromm’s method 

The methods here form the foundation for what follows. Advanced 
methods are put together from simplier ones. 
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Stencils are another way to express how 
methods are put together. 

space 

tim
e 

n+1 

n 

n+1 

n 

j-1 j j+1 

j-1 j j+1 
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Let’s start with the most obvious thing to 
try. 
•  We’ll take the scalar wave equation and use centered 

differencing plus an forward Euler time stepping,  

•  The problem is that this method is unconditionally unstable. 
•  How can this be fixed? 

∂u
∂t

+∂u
∂x

=0⇒
ujn+1−ujn
∆t +

uj+1n −uj−1n
2∆x

ujn+1=ujn−∆t
uj+1n −uj−1n
2∆x

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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What does the instability look like? 

20 40 60 80 100

0.2

0.4

0.6

0.8

1 I.C 

Gaussian Square 
Wave 

1 period 
200 time 

steps 

0.1 period 
20 time 
steps 
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Artificial viscosity has its origin at 
Los Alamos 
•  The first open paper is by Von Neumann and Richtmyer 

(1950, J. Appl. Phys.)- Richtmyer published a LA report 2 
years earlier. 

•  I gave that report to you during Lecture 1. 
•  How about trying artificial viscosity to fix the simple 

differencing scheme! 
•  Let’s do an experiment and try different sizes of viscosity. 

∂u
∂t

+∂u
∂x

=ε∂2u
∂x2

⇒ ujn+1=ujn−∆t
uj+1n −uj−1n
2∆x

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ε∆t

uj+1n −2ujn+uj−1n
∆x2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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Results using artificial viscosity to 
stabilize the simple method. ν = ε∆t

2∆x2
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Upwind differencing is the archetypal 
CFD method (in the Eulerian-frame). 

•  That was not very satisfying, we can add some physics to 
the problem and stabilize the methods in a more 
satisfactory manner. 

•  If we consider the direction of wave propagation in 
constructing the differencing, upwind differencing results. 

•  This was originally introduced in 1952 by Courant, 
Issacson and Rees. 

•  Godunov also introduced another upwind form. 
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There are several ways to derive upwind 
differencing, here is the interpolation method. 

•  The simplest way to get upwind differencing is interpolate 
back along characteristics using the CFL number 

ujn+1= 1−c
⎛

⎝
⎜

⎞

⎠
⎟ujn +cuj−1n ;c=a

∆t
∆x

j j-1 
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Let’s experiment with this formulation as 
before. 

C=0.5 

C=0.25 

C=0.5 

C=0.25 
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Examine the error’s associated with the 
solutions. 

C=0.5 

C=0.25 

C=0.5 

C=0.25 
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A couple of additional comments… 
•  This turns out to be the same as the artificial viscosity 

coefficient set to 0.5 
•  If this method is run with the CFL number equal to one, the 

exact solution is recovered. 
–  The characteristic condition 

•  This method is first-order accurate in time and space.  It is 
stable to a CFL number of one (proven in the next lecture). 
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Lax-Wendroff’s method was a major 
development in computations. 

•  As well as be important theoretically, the joint 
paper produced a landmark method. 

•  The method is second-order accurate, stable to a 
CFL number of one. 

•  It corresponds to our artificial viscosity example of 
a coefficient of 0.25. 

•  The method is derived by expanding the solution 
in a Taylor series and substituting second-order 
approximations. 

Lax & Wendroff 
In Los Alamos at 

Burt’s 70th 
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The derivation of the Lax-Wendroff 
method. 
•  Expand the function in a Taylor series, 

•  Assume the functions are smooth enough to exchange space 
and time derivatives, 

ujn+1=ujn+∆t
∂u
∂t

+∆t22
∂2u
∂t2

+H.O.T.

ujn+1=ujn−
∆t
2∆x uj+1

n −uj−1n
⎛

⎝
⎜

⎞

⎠
⎟+ ∆t2
2∆x2

uj+1n −2ujn+uj−1n
⎛

⎝
⎜

⎞

⎠
⎟

ujn+1=ujn−∆t
∂u
∂x

+∆t22
∂2u
∂x2

+H.O.T.
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Lax-Wendroff method can be done as a 
two-step method. 
•  This was formulated by Richtmyer in 1963. 

ujn+1=ujn−
∆t
2∆x uj+1

n −uj−1n
⎛

⎝
⎜

⎞

⎠
⎟+ ∆t2
2∆x2

uj+1n −2ujn+uj−1n
⎛

⎝
⎜

⎞

⎠
⎟

ujn+1=ujn−c uj+1/2n+1/2−uj−1/2n+1/2⎛

⎝
⎜

⎞

⎠
⎟

uj+1/2
n+1/2= 12 uj

n+uj+1n
⎛

⎝⎜
⎞

⎠⎟
− ∆t
2∆x uj+1

n −ujn
⎛

⎝⎜
⎞

⎠⎟
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Let’s test the method as before… 

C=0.5 

C=0.25 

C=0.5 

C=0.25 
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Examine the error’s associated with the 
solutions. 

C=0.5 

C=0.25 

C=0.5 

C=0.25 
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Second-order upwinding is the extension to 
upwinding but using a quadratic interpolation. 

•  It can also be derived using a Godunov-type of form by 
assuming each zone has a linear variation associated with it.  
The linear variation is upwind biased. (derived as part of the 
homework!) 

ujn+1=ujn−
∆t
2∆x uj

n−4uj−1n +3uj−2n⎛

⎝
⎜

⎞

⎠
⎟+ ∆t2
2∆x2

ujn−2uj−1n +uj−2n⎛

⎝
⎜

⎞

⎠
⎟

ujn+1=ujn−c uj+1/2n+1/2−uj−1/2n+1/2⎛

⎝
⎜

⎞

⎠
⎟
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Let’s do the tests as before. 

C=0.5 

C=0.25 

C=0.5 

C=0.25 
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Examine the error’s associated with the 
solutions. 

C=0.5 

C=0.25 

C=0.5 

C=0.25 
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The stability, consistency and accuracy of the 
method can be studied via Fourier analysis. 

•  It involves substituting an analytical Fourier series for the grid 
function 

•  It assumes that the function is periodic and the equation is 
linear. 

•  It is limited to linear equations. 
•  Despite these limitations, conducting this analysis is a virtual 

prerequistite for the ultimate utility of a method to solve 
nonlinear systems of equations. 

ujn=exp ijθ
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⇒ujn=cos jθ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+isin jθ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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First a bit of history… 

•  Von Neumann introduced the Fourier technique 
at Los Alamos in 1946 in a lecture. 

•  It was originally classified! 
•  Used to analyze parabolic PDE integrators in 

1947 LA Report (LA-657) 
•  Related to L2 norm,… 

–  …Energy norm 
–  We’ll do other norms, L1 
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Analysis of upwind differencing  
•  Substitute the Fourier series for the grid function 

•  Expand into trigonometric functions and collect real and 
imaginary parts 

•  Define the amplification and phase error 

ujn=exp ijθ
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⇒ujn+1=ujn − C ujn −uj−1n

⎛

⎝
⎜

⎞

⎠
⎟⇒

Aexp ijθ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=exp ijθ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−C exp ijθ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−exp i j−1⎛

⎝
⎜

⎞

⎠
⎟θ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

A=1−C 1−exp −iθ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ A=1−C 1−cos θ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+isin θ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

amp= 1−C 1+cos θ⎛
⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2
+ −Csin θ⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2

phase=arctan
−Csin θ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1−C 1+cos θ⎛
⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

−cθ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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Where does this phase (wave dispersion) 
error formula come from? 
•  Write the numerical scheme as 

•  The correct answer is 

•  The argument (phase angle) of the numerical scheme can be 
found and compared to the exact solution 

•  The same for the exact solution gives 

un+1 = S θ( )un → un+1 = S θ( ) exp −iα θ( )( )un

un+1 = un exp −iCθ( )

Arg S θ( )( ) = arctan Im S θ( )( )
Re S θ( )( )

⎡

⎣
⎢

⎤

⎦
⎥

−Cθ
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Analysis of upwind differencing 
(continued) 
•  Perform an asymptotic expansion in small angles 

–  Amplitude error even order errors 

–  Phase error odd order (divide by the angle!) 

•  Bound the function for all angles and find the CFL limit (error 
goes to zero at CFL=1, then unstable). 

amp≈1+ −c2+
c2
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
θ2+O θ4⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

phase≈1+ −16+
c
2−

c2
3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
θ2+O θ4⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Looking at error one must remember that 
this is for a single time step.   
•  If one wants to get to the amount of error for a fixed period of 

time, the formulas need to change. 
•  A fixed point in time will take 

•  For example looking at amplitude error 
n = 1

c

S c,θ( )

S c,θ( ) 1 c
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There is a closely related analysis of only 
the time-differencing (semi-discrete) 
•  One can derive the ideal behavior by taking the derivative of 

the spatial gradient, 

•  This form has found great use in designed high order methods 
–  Ideal schemes have no dissipation and only dispersion 

error. 

∂u
∂x

⇒∂u
∂θ

= iexp iθ⎛
⎝
⎜⎜

⎞

⎠
⎟⎟
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Let’s look at an example of 2nd order 
centered differencing versus upwinding. 
•  The symbol for 2nd order centered is 

•  The symbol for 1st order upwind is 

–  The real part represents dissipation 
–  And the imaginary part is the ideal operator (and the same 

as second-order centered) 

isin θ⎛
⎝
⎜⎜

⎞

⎠
⎟⎟

1−cos θ⎛
⎝
⎜⎜

⎞

⎠
⎟⎟
+isin θ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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Analyzed by plotting the parts of the 
symbol versus the ideal - for upwinding 

Dispersion Amplitude 
Zero is ideal 

Normalized 
Dispersion 
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The reason for doing modified equation 
analysis isn’t always clear. 
“…the progress of physics will to a large extent depend on the 

progress of nonlinear mathematics, of methods to solve 
nonlinear equations.  …and therefore we can learn by 
comparing different nonlinear problems.” – Werner 
Heisenberg 
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The technique for modified equation 
analysis  was introduced by Hirt. 
•  Hirt (1968) introduced the technique and examined the 

truncation errors in physical terms. 
•  Warming and Hyett (1974) discussed the method in great 

detail and provided an analysis framework for fully discrete 
integrators. 
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The modified equation technique is an 
important augmentation to Fourier analysis. 
•  The key to modified equation analysis (MEA) is the ability to..  

–  …see the errors in differential form,... 
–  …and extend the analysis to include nonlinearity. 

•  This gives us several advantages: 
–  The truncation errors can be studied in terms of differential 

equations and directly compared with physical or modeled 
terms, 

–  and directly treat nonlinear physics or numerics.  
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Semi-discrete is much simplier to deal 
with! 
•  None of this time-space cancelation is necessary. 
•  Consider a fourth-order space difference 

•  Take the Taylor expansion, 

∂u
∂x

≈ 2
3∆x uj+1−uj−1

⎛

⎝
⎜

⎞

⎠
⎟ −

1
12∆x uj+2−uj−2

⎛

⎝
⎜

⎞

⎠
⎟

∂u
∂x

−∆x430
∂5u
∂x5

−∆x6252
∂7u
∂x7
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What proof (verification) means in 
numerical analysis! 

“For the numerical analyst there are two kinds of truth; the truth 
you can prove and the truth you see when you compute.” – 
Ami Harten 
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Another thought 
courtesy of Peter Lax 

“How fortunate that in this best of all possible worlds the equations 
of ideal flow are nonlinear!” 

     SIAM Review, January 1969 

Of course how could it be otherwise? 
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TURBULENCE MODELING 

Turbulence Modeling 1 
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Some quotes to set our thoughts in the 
right direction. 
•  “I am an old man now, and when I die and go to heaven there 

are two matters on which I hope for enlightenment. One is 
quantum electrodynamics, and the other is the turbulent 
motion of fluids. And about the former I am rather optimistic.” - 
Horace Lamb - 

•  “Turbulence is the most important unsolved problem of 
classical physics.” - Richard Feynman 
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References for this Lecture 
Lots of good books on turbulence! 

Pope 
    Frisch    My own as an editor 

Lumley 

    Saugaut 
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There is some basic turbulent theory. 

•  There are the large scales 
where energy enters the 
flow. 

•  The inertial range where 
energy flows to smaller 
scales. 

•  The dissipation range 
where the energy goes to 
heat. 

•  Material mixing will takes 
place at a different scale. 
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Here is a simple explanation of 
turbulence. 

Re=9.6 

Re=26 

Re=140 

Re=2000 

Re=10,000 
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There is some basic turbulent theory. 
•  Turbulence is best understood through a simple abstraction 

using symmetry, isotropy flows that are homogeneous. 
•  The smallest scale is the Kolmogorov scale where energy is 

dissipated, 

•  The inertial range is defined by an analytical result 
(Kolmogorov’s 4/5 law) 

  
η =

K
ν

⎛

⎝
⎜

⎞

⎠
⎟

1/3

  
4
5
K  = u x +  ⋅ n̂( ) − u x( )⎡⎣ ⎤⎦

3
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Turbulence is produced by instabilities. 
•  Kelvin-Helmholtz 

•  Rayleigh-Taylor 

•  Richtmyer-Meshkov 

gravity 
ρ1 > ρ2

ρ2

shock 

Turbulence Modeling 7 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

Turbulence modeling falls into several 
distinct categories. 
•  The simplest thing to do is to apply an eddy viscosity, mixing 

length theory to compute the mean dissipation due to the 
presence of turbulence.. 

•  The eddy viscosity can be defined by equations, kinetic 
energy, or two equations, or more.  This is usually associated 
with Reynolds Averaged Navier-Stokes (RANS). 

•  Large eddy simulation (LES) where the key is subgrid 
modeling and numerical resolution. 

•  Implicit large eddy simulation (ILES) avoids subgrid modeling, 
but focuses on the numerical methodology. 

•  Finally, direct numerical simulation (DNS) where the complete 
turbulent physics are computed without models. 
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The simplest models are called Reynolds 
Averaged Navier-Stokes (RANS) models 
•  One can then define equations for production and dissipation 

of turbulent kinetic energy, and then perhaps their moments 
for even more equations. 
–  One can consider this a sequence of moments 
–  1st moment is the KE, the 2nd moment is the variation in 

KE are the most complex models currently. 
•  One of the key aspects of this approach is the averaging 

through defining an ensemble, a sequence of events that is 
averaged over. 

•  The model is supposed to give the results for the ensemble of 
such flows. 
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Closures are often based on a eddy viscosity, that 
graduates to evolution equations for eddy viscosity. 

•  Simplest is eddy viscosity, ala Prandtl 

•  Next, an evolution equation is defined for the turbulent kinetic 
energy 

–  With an eddy viscosity defined by 

∂uiu j

∂xi
=
∂ ui + ′ui( ) u j + ′u j( )

∂xi
=
∂uiu j

∂xi
+
∂ ′ui ′u j

∂xi
≈
∂uiu j

∂xi
+ ∂
∂xi

νT
∂ui
∂xi

 
νT = 2

∂ui
∂xi

 
Dk
Dt

= ∇ ⋅
νT
σ

∇k +P − ε

 νT = c k

Turbulence Modeling 10 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

An example from Tim Clark (formerly of LANL) to illustrate the 
differences between LES and RANS. 

•  Simulation is two-dimensional, immiscible 
(no numerical diffusion). Size = 
1000x1000 

•  Figures sequentially shows an average of  
1, 2, 5, 10, 25 and 75 realizations.  

•  Each realization started as a quiescent 
flow. 

•  Perturbation spectrum and RMS value of 
perturbations are equal for all realizations. 

•  The result of ensemble averaging appears 
“diffusive” but is not! The distinction 
between a diffusive versus a structured 
mix is determined by the covariance of 
density or concentration–information 
included in a RANS model but not in an 
LES. 

One Realization 

Turbulence Modeling 11 
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Example of an Exact Ensemble Average 

Two Realizations 

Turbulence Modeling 12 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

Example of an Exact Ensemble Average 

Five Realizations 

Turbulence Modeling 13 

•  Simulation is two-dimensional, immiscible 
(no numerical diffusion). Size = 
1000x1000 

•  Figures sequentially shows an average of  
1, 2, 5, 10, 25 and 75 realizations.  

•  Each realization started as a quiescent 
flow. 

•  Perturbation spectrum and RMS value of 
perturbations are equal for all realizations. 

•  The result of ensemble averaging appears 
“diffusive” but is not! The distinction 
between a diffusive versus a structured 
mix is determined by the covariance of 
density or concentration–information 
included in a RANS model but not in an 
LES. 
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Example of an Exact Ensemble Average 

Ten Realizations 
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Example of an Exact Ensemble Average 

Twenty Five Realizations 
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•  Simulation is two-dimensional, immiscible 
(no numerical diffusion). Size = 
1000x1000 

•  Figures sequentially shows an average of  
1, 2, 5, 10, 25 and 75 realizations.  

•  Each realization started as a quiescent 
flow. 

•  Perturbation spectrum and RMS value of 
perturbations are equal for all realizations. 

•  The result of ensemble averaging appears 
“diffusive” but is not! The distinction 
between a diffusive versus a structured 
mix is determined by the covariance of 
density or concentration–information 
included in a RANS model but not in an 
LES. 
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Example of an Exact Ensemble Average 

Fifty Realizations 

Turbulence Modeling 16 

•  Simulation is two-dimensional, immiscible 
(no numerical diffusion). Size = 
1000x1000 

•  Figures sequentially shows an average of  
1, 2, 5, 10, 25 and 75 realizations.  

•  Each realization started as a quiescent 
flow. 

•  Perturbation spectrum and RMS value of 
perturbations are equal for all realizations. 

•  The result of ensemble averaging appears 
“diffusive” but is not! The distinction 
between a diffusive versus a structured 
mix is determined by the covariance of 
density or concentration–information 
included in a RANS model but not in an 
LES. 
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Example of an Exact Ensemble Average 

Seventy Five Realizations 

Turbulence Modeling 17 

•  Simulation is two-dimensional, immiscible 
(no numerical diffusion). Size = 
1000x1000 

•  Figures sequentially shows an average of  
1, 2, 5, 10, 25 and 75 realizations.  

•  Each realization started as a quiescent 
flow. 

•  Perturbation spectrum and RMS value of 
perturbations are equal for all realizations. 

•  The result of ensemble averaging appears 
“diffusive” but is not! The distinction 
between a diffusive versus a structured 
mix is determined by the covariance of 
density or concentration–information 
included in a RANS model but not in an 
LES. 
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Next, we have large eddy simulation. 
•  Perhaps the philosophy of LES comes down to this,  

–  “No amount of genius can overcome a preoccupation with 
detail” - Levy’s Eighth Law 

Turbulence Modeling 18 
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Example of an Exact Spatial Average: Again from Tim Clark 

•  Same simulations as used for 
ensemble example. 

•  Spatial averages are over a 
“circular” region with radii of 
(sequentially) 1, 2, 4, 8, 16, 32 and 
64 cells. 

•  Fine detail and two-phase nature 
lost due to averaging: “smeared” 
result. 

•  LES methods use a spatial average 
convolved with a filter.  They do not 
keep higher moments, thus the 
smearing is indistinguishable from 
molecular mixing. 

•  For practical calculations the 64 cell 
case may be “optimistic”–the 
obvious limit for larger filter sizes is 
a featureless smear. 

Radius = 0.5 “Cells” 
     (Unaveraged) 

1000

800

600

400

200

0
10008006004002000
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Example of an Exact Spatial Average 

•  Same simulations as used for 
ensemble example. 

•  Spatial averages are over a 
“circular” region with radii of 
(sequentially) 1, 2, 4, 8, 16, 32 and 
64 cells. 

•  Fine detail and two-phase nature 
lost due to averaging: “smeared” 
result. 

•  LES methods use a spatial average 
convolved with a filter.  They do not 
keep higher moments, thus the 
smearing is indistinguishable from 
molecular mixing. 

•  For practical calculations the 64 cell 
case may be “optimistic”–the 
obvious limit for larger filter sizes is 
a featureless smear. 

Radius = 1.5 “Cells” 

1000

800

600

400

200

0
10008006004002000
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Example of an Exact Spatial Average 

Radius = 2.5 “Cells” 

1000

800

600

400

200

0
10008006004002000
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•  Same simulations as used for 
ensemble example. 

•  Spatial averages are over a 
“circular” region with radii of 
(sequentially) 1, 2, 4, 8, 16, 32 and 
64 cells. 

•  Fine detail and two-phase nature 
lost due to averaging: “smeared” 
result. 

•  LES methods use a spatial average 
convolved with a filter.  They do not 
keep higher moments, thus the 
smearing is indistinguishable from 
molecular mixing. 

•  For practical calculations the 64 cell 
case may be “optimistic”–the 
obvious limit for larger filter sizes is 
a featureless smear. 
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Example of an Exact Spatial Average 

•  Same simulations as used for 
ensemble example. 

•  Spatial averages are over a 
“circular” region with radii of 
(sequentially) 1, 2, 4, 8, 16, 32 and 
64 cells. 

•  Fine detail and two-phase nature 
lost due to averaging: “smeared” 
result. 

•  LES methods use a spatial average 
convolved with a filter.  They do not 
keep higher moments, thus the 
smearing is indistinguishable from 
molecular mixing. 

•  For practical calculations the 64 cell 
case may be “optimistic”–the 
obvious limit for larger filter sizes is 
a featureless smear. 

Radius = 4.5 “Cells” 

1000

800

600

400

200

0
10008006004002000
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Example of an Exact Spatial Average 

Radius = 8.5 “Cells”	



1000

800

600

400

200

0
10008006004002000
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•  Same simulations as used for 
ensemble example. 

•  Spatial averages are over a 
“circular” region with radii of 
(sequentially) 1, 2, 4, 8, 16, 32 and 
64 cells. 

•  Fine detail and two-phase nature 
lost due to averaging: “smeared” 
result. 

•  LES methods use a spatial average 
convolved with a filter.  They do not 
keep higher moments, thus the 
smearing is indistinguishable from 
molecular mixing. 

•  For practical calculations the 64 cell 
case may be “optimistic”–the 
obvious limit for larger filter sizes is 
a featureless smear. 
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Example of an Exact Spatial Average 

Radius = 16.5 “Cells” 

1000

800

600

400

200

0
10008006004002000
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•  Same simulations as used for 
ensemble example. 

•  Spatial averages are over a 
“circular” region with radii of 
(sequentially) 1, 2, 4, 8, 16, 32 and 
64 cells. 

•  Fine detail and two-phase nature 
lost due to averaging: “smeared” 
result. 

•  LES methods use a spatial average 
convolved with a filter.  They do not 
keep higher moments, thus the 
smearing is indistinguishable from 
molecular mixing. 

•  For practical calculations the 64 cell 
case may be “optimistic”–the 
obvious limit for larger filter sizes is 
a featureless smear. 
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Example of an Exact Spatial Average 

Radius = 32.5 “Cells” 

1000

800
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400

200

0
10008006004002000
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•  Same simulations as used for 
ensemble example. 

•  Spatial averages are over a 
“circular” region with radii of 
(sequentially) 1, 2, 4, 8, 16, 32 and 
64 cells. 

•  Fine detail and two-phase nature 
lost due to averaging: “smeared” 
result. 

•  LES methods use a spatial average 
convolved with a filter.  They do not 
keep higher moments, thus the 
smearing is indistinguishable from 
molecular mixing. 

•  For practical calculations the 64 cell 
case may be “optimistic”–the 
obvious limit for larger filter sizes is 
a featureless smear. 
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Example of an Exact Spatial Average 

Radius = 64.5 “Cells” 
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400

200

0
10008006004002000
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•  Same simulations as used for 
ensemble example. 

•  Spatial averages are over a 
“circular” region with radii of 
(sequentially) 1, 2, 4, 8, 16, 32 and 
64 cells. 

•  Fine detail and two-phase nature 
lost due to averaging: “smeared” 
result. 

•  LES methods use a spatial average 
convolved with a filter.  They do not 
keep higher moments, thus the 
smearing is indistinguishable from 
molecular mixing. 

•  For practical calculations the 64 cell 
case may be “optimistic”–the 
obvious limit for larger filter sizes is 
a featureless smear. 
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Example of an Exact Spatial Average 

Radius = 128.5 “Cells” 
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Turbulence Modeling 27 

•  Same simulations as used for 
ensemble example. 

•  Spatial averages are over a 
“circular” region with radii of 
(sequentially) 1, 2, 4, 8, 16, 32 and 
64 cells. 

•  Fine detail and two-phase nature 
lost due to averaging: “smeared” 
result. 

•  LES methods use a spatial average 
convolved with a filter.  They do not 
keep higher moments, thus the 
smearing is indistinguishable from 
molecular mixing. 

•  For practical calculations the 64 cell 
case may be “optimistic”–the 
obvious limit for larger filter sizes is 
a featureless smear. 
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Large eddy simulation requires the numerical 
solution of part of the inertial range. 

•  The modeling is to provide the effect of the length scales 
truncated from the flow. 

•  The most famous model is the Smagorinsky model, an eddy 
viscosity model 

•  Other models include non-dissipative effects (self-similarity) 
 ∇ ⋅τ ,τ = CSmagh

2 ∇u ∇u

 ∇ ⋅τ ,τ = Ch2∇u∇u
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The Smagorinsky model is based on Von 
Neumann-Richtmyer artificial viscosity. 

•  It was the suggestion of Jules Charney that  Von 
Neumann’s viscosity be used in modeling weather in 
order to stabilize the calculations (1956). 

•  Smagorinsky developed the 3-D version of artificial 
viscosity based on this suggestion. 

•  This was the start of LES modeling. 
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The standard modeling approach for 
turbulence is based on certain assumptions. 

Physics 

Models Numerics 

Ideal Euler 

Kolmogorov -  
Homogeneous 

Equilibrium  

Theory 

Theory (KE  
Conserving) 

Ideal Euler 
is unphysical 
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The numerics as modeling approach to 
turbulence is known as ILES. 
•  Implicit Large Eddy Simulation relies upon the dissipative 

properties of modern numerical methods for hyperbolic PDEs 
to model turbulence. 

•  At first glance the two fields would seem to have very little in 
common. 

•  This approach began through the empirical observation of its 
effectiveness by pioneers in these modern methods (Boris & 
Woodward) 

•  More recently the reasons for the effectiveness of this method 
are becoming clear through detailed analysis of the dissipative 
properties of the methods. 

•  In a nutshell, the methods produce the same dissipative 
behavior in the inertial range as turbulence. 
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Starting with Jay Boris, the Naval 
Research Lab has led this area. 

•  These calculations use the flux-corrected 
transport method 
–  Many different applications including 

chemically reactive flows 

Calculation by F. Grinstein 

Calculation by Jay Boris and others 
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The PPM method has become the standard in 
astrophysics and also successful with ILES. 

•  Turbulence is ubiquitious in astrophysical flows: supernova, natural 
convection in stars, galactic clouds, cosmology 

•  PPM is a high-order Godunov method. 

Calculations by  
the FLASH code  

U. Chicago 

Supernovaes 
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The numerics as modeling modeling is based on different 
assumptions.  Are they less valid than the classical 
assumptions? 

Physics 

Models Numerics 

Weak Solution, 
Vanishing 
viscosity 

Nonlinear Stability 
TVD, TVB, ENO 

Theory 

Theory 
Assures that  
the effective  

model is stable 

These methods are broadly 
known as non-oscillatory 

methods and use non-trivial 
nonlinear differencing. 
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More and more engineering flows have 
been addressed by ILES methods 

•  Fureby has led the validation of these methods for a broad range of 
engineering flows. Uses TVD schemes 

ReL=4.1·106, a=20,  
Grid of 1.15·106 cells,  

y+≈20, MILES+WM 
Fureby et al., AIAA J. ’04	



• L=1.36 m, D=0.23 m 
• U0=46 m/s  
• Re=4·106 

• angle of attack  
 a=0°–>30° 

typical MILES studies: 
grids 0.8 - 1.6·106 nodes 

y+≈5 – 25	



Experiments by: 
• Simpson et al (VATech., 

1990 - ) 
• Kreplin & Meier (DLR ) 

• Hahn & Patel (1979)	



Turbulence Modeling 35 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

Other applications such as fluid instabilities 
(R-M & R-T) and atmospheric boundary layers 

600µs 740µs 

High Flow Rate 

xPPM 
500x500 

Simulation        Experiment 

D.L. Youngs, AWE, UK 
Lagrangian (vNR),  

Eulerian, 3rd order VanLeer 

Calculation by W. Rider 

Experiments Tomkins, 
Prestridge, …LANL 

Sorbjan, Smolarkiewicz  
And Margolin, MPDATA 
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The John Hopkins University 
 experimental setup. 
•  Data is taken at four stations in the wind tunnel. 

•  The initial data used in the LES runs is given by the experimental 
group and JHU. 

•  The experimental data was published in JFM (480, pp. 129-160, 
2003) and can be found on a JHU website. 

•  Updates and extends the CBC experiment/data 
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Results: longitudinal PDF of velocity 
increments 

Kang et al  
JFM, 480, 

2003. 
All the ILES methods produce 
much more intermitent results 

than the CLES.   The xPPM and MPDATA 
results are the closest to the data. 

Turbulence Modeling 38 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

Finally there is direct numerical 
simulation (DNS) of turbulence. 
•  In DNS all the (relevant) length scales of the flow are 

“resolved” numerically, i.e. the intent is that the numerical 
errors are much smaller than any physical effect. 
–  These calculation generally receive little verification, but 

some validation. 
–  A recent Thesis at Georgia Tech does verification, most 

DNS calculation are not resolved! 
•  Typically solves the incompressible Navier-Stokes equations 

using spectral or high-order finite difference methods. 
•  The cost of these calculations scales radically with Reynolds 

number Re9/4 

•  The largest calculation is 40963 gives a Reynolds number of 
about 100,000 (done on the “Earth Simulator” in Japan). 
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DNS requires extensive data analysis. 

1283 piece of 
the LANL 20483 
Calculation by 

Mark Taylor 

Turbulence Modeling 40 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

Computational studies of R-T are some 
of the largest simulations ever done. 

Caltech 
AW Cook LLNL 
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PART 2. CFD V&V 

CFD V&V (1) 1 
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Quote du jour… 
•  “A computer lets you make more mistakes faster than any 

invention in human history— with the possible exceptions of 
handguns and tequila.”- Mitch Ratliffe 

“Aristotle maintained that women have fewer teeth than men; 
although he was twice married, it never occurred to him to 
verify this statement by examining his wives’ mouths.” -
Bertrand Russell 

2 CFD V&V (1) 
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Verification and validation are essential 
to the quality of simulation. 

*L.Alvarez, in D. Greenberg, The Politics of Pure Science, U. Chicago Press, 
1967. 

•  Verification ≈ Solving the equations correctly 

•  Calibration ≈ Adjusting (“tuning”) parameters 

•  Validation ≈ Solving the correct equations 

–  Mathematics/Computer Science issue 
–  Applies to both codes and calculations 

–  Physics/Engineering (i.e., modeling) issue 
–  Applies to both codes and calculations 

•  Benchmarking ≈ Comparing with other codes 

–  Parameters chosen for a specific class of problems 

–  “There is no democracy in physics.”* 
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The 7 Deadly  
Sins of V&V 

"   Assume the code is correct 
"   Only do a qualitative comparison (e.g., the 

viewgraph norm!) 
"   Use problem specific special  methods or 

settings 
"   Use code-to-code comparisons 
"   Use only one mesh  
"   Only show the results that make the code 

look good - the ones that appear correct 
"   Don’t differentiate between accuracy and 

robustness 

 Lust 
 Gluttony 

 Envy 

 Wrath 
 Sloth 
 Pride 

 Avarice 

Otto Dix, 1933 Hieronymus Bosch. 1485 

Traditional “7 Deadly Sins” 
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7 Virtuous  
Practices in V&V 

  Assume the code has flaws, bugs, and 
errors then FIND THEM! 

  Be quantitative 
  Verify and Validate the same thing 
  Use analytic solutions & experimental data 
  Use systematic mesh refinement  
  Show all results - reveal the shortcomings 
  Assess accuracy and robustness 

separately 

  Prudence 

  Temperance 
  Faith 
 Hope  

  Fortitude 
  Justice   

  Charity 

Traditional “7 Cardinal Virtues” 
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The Corollaries to the Virtues 

  V&V helps to ensure quality.  We help determine where the codes 
need to be improved.  We help determine the codes’ limits.  This 
should help allocate resources. 

 Make an unambiguous and clear statement of results.  V&V is 
rigorous and systematic and self-consistent. 

 Base results on unambiguous, high quality standards. 

 We want codes that are consistent, stable, and convergent. Better 
computers yield better solutions! 

  Show everything, be honest and open. 

 Make sure you know what you are looking at. 
6 CFD V&V (1) 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

This schematic shows the sort of information 
that calculation verification can provide. 

Computer Resources 
e.g. more grid, memory… 

Ameasured 

∆A 

∆A 
∆A 

p>>p 

∆A= error estimate 

p = convergence rate 

model 1 method 1 
model 1 method 2 
model 2 

Verification 7 
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VERIFICATION 

8 Verification 
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Verification involves error estimates and 
computing convergence rates. 
•  To conduct a verification exercise one needs to compute or 

rigorously estimate errors. 
•  These errors are used to compute the convergence rates. 

–  The expected rates of convergence depend on the 
problem solved (how smooth or regular the solution is). 

•  For a method to be consistent the convergence rate needs to 
be positive and in line with expectations for the methods used 
and the problem solved. 
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Types of verification 

•  Software: there is formal verification ala software 
engineering.   
–  I won’t have much to say about this 
–  Regression testing is a part of this area 

•  Code: means comparing the results of the code with an 
analytical solution 
–  Refine meshes/grids, compute normed errors and 

convergence rate 
•  Solution: means computing a solution on multiple grids, 

estimating errors in quantities of interest and the rate of 
convergence.  It is similar to, but not identical to mesh 
sensitivity. 

CFD V&V (1) 10 
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Code comparisons are frequently suggested 
as the way to decide how to proceed. 

•  This is also benchmarking, and it is dangerous. 
•  There is no truth in code comparison… “no 

democracy in science”. 
•  One code is often the standard.  This status is the 

result of other tests (verification and validation).  The 
trust is bound up in those problems, not the code.   

•  The proper way to approach this is to apply the code 
that is the object of the study to the other tests (not 
the standard in the code). 

•  Sometimes there is no other option! But don’t go 
here first! 

11 CFD V&V (1) 
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Code to Code Comparisons 
Are a Poor Substitute for Formal Verification 

Slide from Marty Pilch’s PCMM overview talk 
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Most verification is built upon this simple 
error ansatz. 
•  Here is the simplest way to characterize the error, 

–  E is an error measure (norm), S is the numerical solution, 
A is the “answer”, h is the mesh spacing 

•  One can get the errors in one of two ways: 
–  An exact solution (2 numerical solutions needed), A is the 

exact solution. 
–  Assuming the finer grid is more accurate (3 numerical 

solutions needed), A is the finer grid solution. 

E k = S − A k = Ch
α

13 Verification 
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There are different basic models of how 
the errors will behave. 
•  Monotone: the best case, the norm for 

simple problems 

•  Bounded: an OK condition, often 
observed 

•  Statistical-Indeterminate: bad news, but 
often observed a problem difficulty 
increases.  Not OK, it’s a sign of 
problems. 

E = S − A = Chα

E = S − A = Chα

E = PDF

E

h

E

h

E

h

14 Verification 
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There are several different ways to do a 
convergence analysis. 

–  Has demonstrated results with many codes 

    

� 

 fexact− fcomp ~        A Δx( ) p +L
Error in    

computed = 
solution    

   Spatial 
=                          

dependence  
Zone size 

Convergence rate 
•  Code Physics Verification: convergence analysis 

    

� 

 ffine − fcoarse ~ E0 +A Δx( ) p +B Δt( )q +C Δx( )r Δt( )s+L

� 

E0 +
  

� 

  B Δt( )q +C Δx( )r Δt( )s+L
                and       

temporal 

•  Calculation Verification 

–  Alternate technology: Method of Manufactured Solutions (MMS) 

  

� 

N f *⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟  =  0
  

� 

N f⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟  =  g
Unknown   

� 

ˆ N ˆ f 
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  =  ˆ g 

Known Computable 
Continuous Discrete 

•  Successfully used for smooth flows 
•  Research:  MMS for multi-D discontinuous flows 
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Error estimates can be computed in 
many norms and several ways. 
•  The three most common error norms are the L1, L2 and L 

infinity norms. 
•  These are all Lp norms,  

•  The L1 norm is related to total variation and monotonicity. 
•  The L2 norm is the energy norm and related to stability in the 

sense of Hilbert and Banach spaces (eeeiiiiikkkkk!!!!) 
•  The L infinity norm is really poorly behaved, the largest error 

in the system. 

Through the systematic use of error  
norms we enslaved the entire galaxy! 

Verification 16 
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Convergence rates are based on the 
method and the nature of the problem. 
•  One can expect to get the full order of accuracy for a method 

for an ideal test problem where the data begins and remains 
smooth (continuously differentiable). 

•  If the problem has a discontinuity or a discontinuous derivative 
(say a kink), than convergence will be degraded. 

•  One needs to watch for spontaneously generated 
discontinuities. 

Verification 17 
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There are expectations. 
•  For smooth “nice” data a code can be expected to converge at 

its design order of accuracy. 
•  With discontinuities you can expect 1st order convergence (at 

best). 
–  Linear discontinuities converge at (m/(m+1)), where m is 

the order of the method. 
–  Nonlinear discontinuities converge at 1st order. 

•  If a problem is grossly under-resolved, non-convergence or 
even divergence can be observed, 
–  As the mesh is refined before normal convergence, the 

results can show super-convergence, a very high rate. 
–  Ultimately the results will settle into the asymptotic result. 

Verification 18 
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The numerical uncertainty can be 
estimated with various models. 

•  One model to consider by Roache. 
–  This is the Grid Convergence Index (GCI) 

methodology with a set “safety ratio.” 

•  Another model was proposed by Stern. 
–  This model produces a safety factor that depends on 

both the observed and theoretical convergence rates. 

•  There are other models, but we believe that these two should be 
considered primary. 
–  Our philosophy is that the focus should be in applying the 

estimates to realistic calculations. 
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•  The standard power error ansatz, 

gives an estimate of numerical error 

•  A safety factor gives the uncertainty estimate: 

•  This safety factor (supposedly) gives a 95% confidence 
interval (the consequence of CFD “experience”). Does it apply 
more generally? 

Roache’s Grid Convergence Index (GCI)* 
uses a fixed safety factor.  

S = A +Chp

  S = Ak +Chk
p;unknowns S,C, p

 
δ =

∆mf

rmf
p −1

;∆mf = Sf − Sm ,rmf =
hm
hf

 Unum = Fsδ;Fs = 1.25

*P. Roache, Verification and Validation in Computational Science and 
Engineering, Hermosa(1996). 

log (h ) 

lo
g 

(S
) 

hf hm hc 
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Stern’s Uncertainty Estimate has a variable 
“safety factor” or asymptotic correction. 
•  The estimate developed by Stern uses the same basic 

framework, but with a key difference… 
•  The safety factor is not constant, but depends on two pieces 

of information, 
–  The observed order of convergence 
–  The theoretical order of convergence 

•  This potentially makes it attractive when the computation is 
not in the asymptotic range, 

pob
pth

Fs =
r pob −1
r pth −1
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Testing the estimates against an  
analytical solution builds confidence. 

•  The errors can be estimated via calculation 
verification and exactly using the exact solution. 

•  This will enable us to examine the quality and 
safety of the uncertainty estimates. 

•  We will use three examples: 
– A simple linear ODE 
– A simple linear ODE with “bad” ∆t’s 
– Sod’s shock tube 

Verification 22 
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Results for linear ODE 
•  We’ll start with the simplest thing possible, 

–  Use a first-order forward Euler method 

–  Compare with a second-order modified Euler 

Exact 
Stern  
Roache  
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Add course title to footer 24 

Results for linear ODE with a bad choice 
for time step size. 

•  We’ll continue with the simplest thing possible and forward 
Euler, 

•  Use a too large time step, ∆t=0.1, 

•  Study a “growing” case  

pT = 1 ∆ cm = 0.0022 FRoache = 1.25
p = 0.44 ∆ cm = 0.0016 FStern = 2.81
λ = 5 δ = 0.0045 FExact = 2.33

pT = 1 ∆ cm = −29.07 FRoache = 1.25
p = 0.25 ∆ cm = −24.46 FStern = 5.31
λ = −5 δ = −129.9 FExact = 3.49
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This can be understood with a bit of 
numerical analysis 

Add course title to footer 25 

- 3 - 2 - 1 0 1
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Order star 

Stability plot 
1− λ∆ tL ≤1

1− λ∆ tL
exp(−λ∆ t)

≤1
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Results for numerical UQ estimation with 
Sod’s Shock Tube. 

•  Sod’s shock tube uses an ideal gas with a 
pressure ratio of 10 and a density ratio of 8 
– Solve this with a Godunov-type method 

Density 

Pressure 
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� 

F ξ;Δx,Δt⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟  =   fexact− fcomp ~ A Δx( ) p +B Δt( )q +C Δx( )r Δt( )s

Example, Combined Space-Time 
Convergence Analysis 

Seven unknowns 

–  Strength: Assumption regarding combined error sources 

Seven equations required 

    

� 

gξ;Δxn ,Δtn
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  =   fexact− fcomp −ξ1 Δxn( )ξ2 −ξ3 Δtn( )ξ4 −ξ5 Δxn( )ξ6 Δtn( )ξ7

    

� 

gξ;Δxn ,Δtn
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  =  0 ,  n=1,K ,7  ⇒   G ξ⎛ 

⎝ ⎜ ⎞ 
⎠ ⎟  =  0 Obtain solutions 

with generalized 
Newton’s method 

–  Weakness: Complexity, cost, uncertainty in solution 

A p	

 B	

 q	

 C	

 r	

 s	



0.010 1.90 0.0067 1.95 0.010 0.90 0.90 

0.010 2.00 0.0078 1.97 0.010 1.01 1.00 
Set 1 

Set 2 

Analysis of 
problem 
involving 
nonlinear 
fields is in 
progress… 

•  Consider the following error Ansatz: 

•  Example:  2D linear advection 
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What happens when codes don’t 
converge. 

•  Start simplifying the problem: 
–  Weaken the jumps or magnitude of problem difficulty, 
–  Take the problem to asymptotic limits (strong shock or weak 

shock limit, etc…) 
–  Change the problem in small ways 
–  Refine the grid some more (is the grid sufficient?) 

•  If all else fails admit that there is a problem that can’t be fixed 
without going deeper. 
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Begin expecting methods to fail, don’t 
begin expecting them to succeed. 
•  The best way to proceed with a testing (verification) study is to 

assume that something is wrong with the code and prove 
what the problem is. 

•  If you cannot prove that the code has an error than the code is 
more likely to be correct. 

•  The code is only correct to the extent that the testing covers 
the domain of interest. 
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Its important to always remember the 
theoretical expectations. 
•  The Lax equivalence theorem: consistency & stability equals 

convergence 
•  The Lax-Wendroff theorem: conservation is required to assure 

weak solutions. 
•  The Hou-LeFloch theorem: without conservation you will not 

get weak solutions 
•  The Majda-Osher theorem: first-order accuracy with 

discontinuities. 
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VALIDATION 

Validation 1 
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Quote du jour… 
“The purpose of computing is insight, not pictures”–Richard 

Hamming 

“Dilbert isn’t a comic strip, it’s a documentary” – Paul Dubois 

Validation 2 
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A new proposed definition  
for Validation 

Validation is the process of assessing the quality of modeling a 
physical process and the magnitude of error associated with 
the simulation (including numerical error, verification).  

Validation is determining whether you are solving the correct 
model (as well as how well) 

•  The benefit of this definition is subtle 
–  The appropriateness of a model for a physical 

circumstance is central. 
–  The fact that even an appropriate model has errors 

(uncertainty) is defined. 
–  This process must include model verification as a key part 

of the complete validation. 

Validation 3 
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The issues with experimental 
connections are essential to avoid! 
•  Validation depends on 

experiment and measurement. 
•  The choice to develop 

separate experimental & 
computational programs is a 
mistake, they must be 
conducted together. 

•  The assessment of modeling 
quality needs to consider the 
quality of the measurement. 
–  Bad measurements mean 

poor constraints for 
modeling. 

Nature 

Simulation 

Theory Experiment 

Verification 

Measurement Models 

Validation 

Achilles’ Heel 

Holy 
Grail 

A conceptual picture of V&V 
within the context of science 

or Observation 

         Code = Theory 
Simulation = Analysis 
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This is the way validation is usually 
presented in the literature. 

5 

ξ

η

This is what you’ll see in most Journals. 

Validation 
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This presentation is an improvement 
because experimental error is shown. 

6 

ξ

η

This is not what you’ll see in most Journals, but you should. 

Validation 
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The previous slide showed a “good” 
agreement with data, this is a “poor” one! 

ξ

η

7 Validation 
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The previous slide showed a “poor” 
agreement with data, this is a “great” one! 

ξ

η

8 Validation 
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What if the errors in the data are not 
known?  Use another accuracy scale 

9 Validation 

ξ

η

Here the yellow shape shows 
an acceptable range of 
response for an application. 
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Here is a notion of how a “converged” 
solution might be described. 

10 

ξ

η

You might see this although rarely depicted in this manner. 
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Here is a notion of how a “converged” 
solution might be described. 

11 

ξ

η

With a third resolution 
convergence can be 

assessed, this is NOT  
converged (0th order). 
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Here is a notion of how a “converged” 
solution might be described. 

12 

ξ

η

With a third resolution 
convergence can be 

assessed, this is 
converged (~1st order). 
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This sequence of meshes can be used to 
extrapolate the solution. 

13 

ξ

η

With three grids plus a convergence rate a converged 
solution can estimated. 

Validation 
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The experimental “error” has two 
components (observation & variability). 

14 

ξ

η

14 Validation 
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The model also can vary due to either 
stochastic or model coefficient uncertainty. 

15 

ξ

η

This result is not 
very good. 

Validation 
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The model also can vary due to either 
stochastic or model coefficient uncertainty. 

16 

ξ

η

This result is good. 

Validation 
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It’s Common to Explore Sensitivity to 
Mesh Density 

17 Validation 

Slide from Marty Pilch’s PCMM overview talk 
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My starting point for looking at 
experimental measurement in validation. 

RAGE FronTier PROMETHEUS Nova/LLNL 

•  Study by Holmes et al.* on R-M instability growth: 

  *Holmes et al., Richtmyer-Meshkov instability growth: experiment, simulation 
and theory, J. Fluid Mech. , 389 , pp. 55–79, 1999 

 Comparison of 
NOVA laser 
experiments 
with three 
different codes 

  The integral scale 
seems to compare 
well— but how do 
the details 
compare? Can’t 
tell from the data! 
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Importance of data quality in experiments 

Benjamin 1999 

Dimonte (R-T),  
1996 

Benjamin (Tompkins & 
Prestridge), 2002 

Jacobs, 2005 
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Shock Tube Experiments at LANL display a 
number of details to understand. 

D 
S 

Si
ng

le
 

cy
lin

de
r 

D = 3mm 
D

ou
bl

e 
cy

lin
de

r 

D = 3mm, S/D = 1.5 

•  Recent experiments have 
used gas cylinders as the 
target 
  Experiments conducted 

by Benjamin, Prestridge, 
Rightley, Vorobieff (UNM), 
and Zoldi. 
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Shock Tube Experiments: Gas Cylinders 
•  Experiments are quite repeatable: ensemble statistics available 

using ~15 shots (variability can be described) 
•  The pixel size is relevant as is the exposure time for the image. 
•  We’re next going to talk about initial conditions. 
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PIV data and analysis should provide a 
window into velocity & vorticity. 

Analysis: two-frame cross-correlation (error from this) 
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MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

Comparison with PIV (we didn’t include 
all the error analysis too!). 

-0.02

0

0.02

0.04

0.06

0.08

0.1

5 15 25 35 45

Experiment (PIV)
Rage
Cuervo

PD
F

Velocity (m/s)

-0.02

0

0.02

0.04

0.06

0.08

0.1

5 15 25 35 45

Experiment (PIV)
Rage
Cuervo

PD
F

Velocity (m/s)

Simulations use compressible Navier-Stokes with  
∆x=10µm 

Vortex induced V=30m/s Vortex induced V=27m/s 
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Improved characterization of initial 
conditions provide important feedback. 

Use Rayleigh scattering to see if the fog  
and SF6 diffuse from each other.  They do! 

Validation 24 
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Improved Characterization of Initial 
Conditions 

Use Rayleigh scattering to see if the fog and SF6 diffuse 
from each other.  For smaller cylinders a greater difference 
between the fog and SF6. 
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The better initial conditions improve the 
quality of the simulations greatly.  

S/D=1.2 

Experiment New IC Old IC 
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Turbulent Mixing? 

•  Flowfield characterization -Is it turbulent? 
–  It is transitioning to turbulent mixing 
–  Single cylinder (5 mm) 

–  Double cylinder(3mm,S/D=1.5) 

� 

Re = Γ ν ≈ 70,000

� 

ReT = u λT ν ≈ 800 − 2500

� 

λT = u / ∂u ∂x( ) ≈ 2mm − 5mm

� 

Re = Γ ν ≈ 30,000

� 

ReT = u λT ν ≈ 600 −1500

� 

λT = u / ∂u ∂x( ) ≈ 2mm − 4mm

Certainly not 
fully developed 
or isotropic! 

� 

η =
0.01mm
1µm

⎧ 
⎨ 
⎩ 
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Single Cylinder with New ICs 

Compressible Navier-Stokes ∆x=10µm 

Experiment Old Method New Method 
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•  Compressible flow leading to mixing  

–  Its driven by the baroclinic source 

Using Simulations for Qualitative Information? 

2.5µs 

r	



  

� 

∇⋅  u 
35µs 

shock 

200µs 400µs 600µs 

“Acoustic waves” weak  
shocks 

strong 
expansion 

Shocks 
are 
“easy,” 
Mixing 
is  
“hard” 

  

� 

∇ρ × ∇p ⇒∇×  u 
Time 
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Double Cylinder with New ICs 

S/D=1.2 S/D=1.5 

S/D=2.0 

C
om

p.
 N

-S
 w

/∆
x=

0.
01

 c
m

 

Exp 

Old New 

Exp 
Exp 

Old Old New New 
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Example results S/D=1.5 at 750µs show 
that the agrement needs work. 

0.5 0.6 0.7 0.8 0.9 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Initial Concentration

Height
Width

50 
100 

150 

200 
width 

height 

Experiment 
@750µs 

200x200 grid ∆x=0.025 cm 

Computation 
@750µs 

Validation 31 



MODELING, EXPERIMENTATION, & VALIDATION – SUMMER 2010 

Double Cylinder Double Cylinder 

This shows a multiscale comparison of the 
shock tube data with calculations.  

Single Cylinder 

FWHM IC=0.5 cm S/D=1.2 S/D=1.5 S/D=2.0 

Experiment 
L-R Scheme 
WARK Scheme* 

*Rider et al., “An Adaptive Time Integration Algorithm for Hyperbolic Conservation Laws”,  
Proc. 9th Int’l Conf. Hyperbolic Problems, to appear, 2002. 

Experiment 

Comparison 

Fractal Wavelet Wavelet Fractal 
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Simulation of a magnetic flyer has been 
a strength of ALEGRA. 

Anode
Cathode

Samples

Validation 33 

No error bars, later work has estimated 
the numerical error at 2% 
The largest error is the drive. 
The measurement error is about 1% 
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Applications: Z-Pinch* 

Radiated Power vs. Time 

6.0 mg array 
(tungsten) 

* work by Lemke, et. al 

axial gap 
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Sinusoidal Core Perturbation 

•  This shows the details that explain the dynamics of the wire array 
implosion 
• It is basically a magnetic Rayleigh-Taylor stagnating on center 

Volume fraction isosurface with magnetic field 
strength 
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Algorithm Impact: 3D Z-Pinch Implosion 

•  This shows the impact of using a better energy remap. The 
radiated power is the key metric.  
–  Results are courtesy Ray Lemke. 

Validation 36 

The measurement 
error is estimated 
at 20%. 
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Dakota contains many of the tools 
necessary to advance. 

•  In a sense Dakota is a toolbox of techniques that can 
be used to examine a code’s results. 

•  Included are optimization, sensitivity and uncertainty 
quantification (see application, next!). 

•  An important aspect is the use of “design of 
experiment” or sampling techniques for integrating 
high-dimensional space which is necessary for UQ etc. 

Introduction to UQ 37 

Z pinch flyer plate 
(useful EOS, world record velocities) 

Simulation 
code!

Model!
Parameters!

Design!
Metrics!

DAKOTA!
   Optimization!

    Uncertainty Quant.!
    Parameter Est.!

    Sensitivity Analysis!
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DAKOTA	
  could	
  be	
  used	
  for	
  sensi3vity	
  and	
  
uncertainty	
  analysis	
  among	
  other	
  things.	
  

•  DAKOTA	
  can	
  automate	
  typical	
  “parameter	
  varia3on”	
  studies	
  with	
  a	
  generic	
  interface	
  
to	
  simula3on	
  soAware	
  and	
  advanced	
  methods.	
  

•  UQ	
  methods	
  in	
  DAKOTA	
  include:	
  	
  
–  Sampling	
  (LHS,	
  quasi-­‐MC,	
  classical	
  experimental	
  designs,	
  OAs,	
  VBD)	
  
–  Reliability	
  methods	
  (FORM,	
  SORM,	
  AMV+,	
  etc.)	
  
–  Dempster-­‐Shafer	
  Evidence	
  Theory	
  
–  Stochas3c	
  expansion	
  methods:	
  	
  Polynomial	
  chaos,	
  stochas3c	
  colloca3on	
  
–  Epistemic-­‐aleatory	
  nested	
  approaches	
  

Response	
  	
  
metrics	
  

DAKOTA	
  
op2miza2on,	
  sensi2vity	
  analysis,	
  

parameter	
  es2ma2on,	
  
uncertainty	
  quan2fica2on	
  

Computa2onal	
  Model	
  (simula2on)	
  
Black	
  box:	
  any	
  code:	
  mechanics,	
  circuits,	
  	
  
high	
  energy	
  physics,	
  biology,	
  chemistry	
  

Input	
  
parameters	
  

hIp://dakota.sandia.gov/	
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Load-current unfold procedure:  
uncertainty quantification needed 

New diagnostic in Z-facility experiments unfolds load 
current from measured foil velocities using ALEGRA 
simulations with optimization: 

z 

r 

current 
load 

VISAR 
probe 

foil 
(Al) 

(not to 
scale) 

VISAR foil  
velocity history 

Computed foil 
velocity history 

ALEGRA 1D 
simulation 

Parameters 

Optimization loop 
 (DAKOTA) 

Nominal current 
measurement Difference < e ? 

Unfolded 
load current 

history 

test current 

axis 
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UQ efforts for load-current unfold  
procedure: uncertainties & sensitivities evaluated 
Numerical error in computed velocity histories: 

Simulation 
parameter 

Associated fractional 
uncertainty in velocity 

Grid size 0.41% 
Timestep size 0.12% 

Solver tolerance 0.01% 

• Obtained from solution verification with 
Richardson extrapolation for 1D forward problem. 

• Total numerical error for forward problem is 0.43% 
in velocity; propagation to unfolded current is 
needed. 

Sensitivity in computed velocity histories to se: 
• We have established that the velocity history is very 

highly sensitive to tabulated electrical conductivities se. 

• More significantly, an inflection point in v(t) indicates 
magnetic field breakout and varies linearly under ±10% 
variation in se. 

• Currently investigating: can variation in breakout time tb 
relative to experiment be used to estimate error in se?   

Error estimates for current unfold: 
• Strongest contributors to uncertainty in current: (1) uncertainty in se, (2) discretization error. 

• With error bounds on se and convergence rate of simulation established, standard UQ methods 
can be used to compute current-unfold uncertainty.  

Increasing se 

(1D) 

breakout 
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Predictive Capability Maturity Model 
(PCMM) is being used to gauge codes. 

•  PCMM is a framework for examining the 
status and progress in simulation. 

•  The process is to “grade” codes and the 
simulations they produce in several key 
areas.   

•  This includes the users of the code and 
their expectations and future needs. 

•  In a sense its loosely modeled on the CMM 
in software engineering. 
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Example of PCMM in Action 
Category/ 
Level 

Level 0 
(no assessment) 

Level 1 
(informal 
assessment) 

Level 2  
(some 
assessment) 

Level 3 
(formal 
assessment) 

Geometric 
fidelity assessed required 

Physics 
fidelity assessed required 

Code 
Verification assessed required 

Solution 
Verification assessed required 

Model 
Validation assessed required 

UQ + 
Sensitivity assessed required 
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Verification 

Who?: Code developers & mathematicians, 
algorithm engineers 
What?: compare code solutions with analytical 
solutions. 
How?: Mesh refinements studies, computing 
errors and error estimates. 
Why?: To make sure that a model in a code is 
implemented correctly. 
Confused with?: Software quality assurance 
(SQA), benchmarking, patch test, code 
comparison 
What is hard?: The analytical structure of 
solutions is not always known.  The verification 
studies are quite tedious. 
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Validation 

Who?: Code developers, users, and modelers. 
What?: Compare code solution results with 
experimental data or observations. 
How?: Comparing the data along with its intrinsic 
errors with the code model result. 
Why?: To determine whether to model in the code 
is a high fidelity model of reality. 
Confused with?: calibration, application 
modeling, uncertainty quantification 
What is hard?: Models in codes can have errors 
ranging from coding to conceptual in nature.  
Data and observations are often poor in quality 
and control with undefined or poorly 
characterized errors. 
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Benchmarking 

Who?: code developers and users 
What?: define standard problems that are 
similar to application problems, but easier to 
set up or examine. 
How?: Often one code will be used to define a 
“standard,” justified or not. 
Why?: It is easier than verification and 
validation.  Success with benchmarking often 
grants to developers and users a “warm fuzzy 
feeling” about a code. 
Confused with?: verification, validation 
What is hard?:  It is a fairly easy activity 
although doing a credible job of developing a 
“good” benchmark is a challenge. 
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Calibration 

Who?: Code users, application modelers. 
What?: Pick parameters to give good 
matches to data and observations. 
How?: Trial and error, optimization of 
results.  Also known as a “knob”. 
Why?: It is a pragmatic activity used when 
the model cannot produce acceptable 
results in a scientifically justifiable manner. 
Confused with?: validation, science 
What is hard?: Producing quantifiably 
“good” results with an inherently flawed 
physical model is not easy. 
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UQ: Uncertainty 
Quantification QMU PCMM 

Quantified margins 
and uncertainties is  
a “framework” for 
high consequence 
decision making 
developed by the 
DOE Labs to help 
with stockpile 
stewardship.  QMU 
uses V&V + UQ to 
help provide an 
evidence based 
approach to its 
advice to the 
country. 

The predictive 
capability maturity 
model is a system for 
identifying the quality 
of and the needs for 
simulation and 
modeling in the 
analysis of systems.  
It includes all the 
aspects of V&V + UQ 
as well as a “grading” 
system for deciding 
what is “good 
enough”. 

Uncertainty 
quantification is the 
study of the size and 
causes for simulation 
uncertainty.  Uncertainty 
comes in two main 
flavors: aleatory 
meaning intrinsic, and 
epistemic meaning from 
lack of knowledge.  
Different techniques 
exist for using a model 
or data in such a way to 
produce evidence of the 
magnitude and nature 
of uncertainties.  
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